sanext

Технический паспорт


Ред. 00003 от 13 ноября 2024 г.

г. Санкт-Петербург

Теплосчетчик компактный Ультразвуковой SANEXT «Mono CU»

Оглавление

1. ИЗГОТОВИТЕЛЬ	3
2. НАЗНАЧЕНИЕ	3
3. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ	4
4. МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	4
5. ОПИСАНИЕ ИНТЕРФЕЙСА ПОЛЬЗОВАТЕЛЯ	6
5. 1. Схема меню теплосчетчика	6
5. 2. Архивные значения (Меню А3)	7
5. 3. Ошибки и предупреждения	7
6. ТАБЛИЦА ЭЛЕКТРИЧЕСКИХ ПОДКЛЮЧЕНИЙ	g
7. ЗНАК УТВЕРЖДЕНИЯ ТИПА	10
8. КОМПЛЕКТНОСТЬ СРЕДСТВА ИЗМЕРЕНИЙ	10
9. НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ, УСТАНАВЛИВАЮЩИЕ ТРЕБОВАНИЯ К ТЕПЛОСЧЕТЧИКАМ КОМПАКТНЫМ «SANEXT»	
10. УКАЗАНИЯ МЕР БЕЗОПАСНОСТИ	10
11. ПОДГОТОВКА К ИСПОЛЬЗОВАНИЮ. РАЗМЕЩЕНИЕ. МОНТАЖ	11
11. 1. Подготовка изделия к установке на месте эксплуатации	11
11. 2. Размещение	11
11. 3. Монтаж	11
12. ПОВЕРКА	13
13. ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВКА	13
14. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА	13
15. ДАННЫЕ О ПЕРИОДИЧЕСКОЙ ПОВЕРКЕ	14
16. СВИДЕТЕЛЬСТВО О ПЕРВИЧНОЙ ПОВЕРКЕ	14

Настоящий паспорт предназначен для ознакомления с принципом работы компактного ультразвукового теплосчетчика SANEXT Mono CU (далее по тексту «теплосчетчик»), с его конструкцией, для изучения правил транспортирования, хранения, монтажа и эксплуатации. Паспорт содержит также сведения об основных технических характеристиках, информацию о поверке и гарантиях изготовителя.

Производитель оставляет за собой право усовершенствовать конструкцию счётчика и его комплектующих, а также вносить соответствующие изменения и корректировки в настоящий паспорт без предварительного уведомления.

При заполнении паспорта не допускаются записи карандашом, смывающимися чернилами, а также подчистки. Неправильная запись должна быть аккуратно зачёркнута и рядом записана новая, которую заверяет ответственное лицо. После подписи проставляют фамилию и инициалы ответственного лица. Вместо подписи допускается проставлять личный штамп исполнителя.

Паспорт необходимо хранить вместе со счётчиком в течение всего срока эксплуатации!

1. ИЗГОТОВИТЕЛЬ

Общество с ограниченной ответственностью «САНЕКСТ.ПРО» (ООО «САНЕКСТ.ПРО»)

ИНН 7813260600

Адрес: 197022, Российская Федерация, г. Санкт-Петербург, ул. Академика Павлова, д. 5В.

тел +7 (812) 317-21-11.

www.sanext.ru

2. НАЗНАЧЕНИЕ

Теплосчетчики компактные ультразвуковые SANEXT Mono CU (далее – теплосчетчики) предназначены для измерений количества тепловой энергии, тепловой мощности, объёмного расхода (объёма), температуры, разницы температур в системах теплоснабжения.

Принцип действия теплосчетчика состоит в обработке вычислителем измерительных сигналов, поступающих от датчика объёмного расхода, датчиков температуры, вычисления и отображения на индикаторном устройстве вычислителя (далее – индикаторное устройство) результатов измерений:

- количества тепловой энергии, Гкал, кВт*ч;
- тепловой мощности, Гкал/ч;
- объёмного расхода теплоносителя в подающем и обратном трубопроводах, м³/ч;
- объёма теплоносителя в подающем и обратном трубопроводах, м³;
- температуры теплоносителя в подающем и обратном трубопроводах, ⁰С;
- разности температур теплоносителя в подающем и обратном трубопроводах, ⁰С;
- текущего времени, ч.

Конструктивно теплосчетчики представляют собой единый теплосчетчик и состоят из:

- датчика объёмного расхода;
- пары датчиков температуры;
- вычислителя.

«SANEXT» Mono CU – теплосчетчики, укомплектованные ультразвуковым датчиками объёмного расхода и имеющие съемный вычислитель.

Объем месячных архивов теплосчетчика составляет 36 месяцев.

В энергонезависимой памяти теплосчетчика хранятся результаты измерений, диагностическая информация и накапливаются данные о времени штатной работы теплосчетчика, ч.

Теплосчетчики обеспечивают дистанционную передачу информации через интерфейсы типа: импульсный выход (открытый коллектор), M-Bus, оптический интерфейс и RS-485, а также могут иметь возможность подключения счетчиков воды с импульсным выходом.

3. ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ

Теплосчетчики имеют встроенное программное обеспечение (ПО), которое устанавливается (прошивается) в памяти вычислителя при изготовлении, в зависимости от модификации теплосчетчиков. В процессе эксплуатации ПО не может быть изменено, т.к. пользователь не имеет к нему доступа.

ПО предназначено для сбора, преобразования, обработки, отображения на индикаторном устройстве вычислителя и передачи во внешние измерительные системы результатов измерений и диагностической информации.

Нормирование метрологических характеристик теплосчетчиков проведено с учётом влияния ПО. Уровень защиты ПО и измерительной информации от преднамеренных и непреднамеренных изменений «высокий» в соответствии с Р 50.2.077-2014.

4. МЕТРОЛОГИЧЕСКИЕ И ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Таблица 1 – Метрологические характеристики теплосчетчика SANEXT Mono CU

Наименование характеристики				Зна	чение			
Диаметр условного прохода (Ду), мм		15 20		0				
Минимальный объёмный расход, Q _{min} , м³/ч	0,012	0,006	0,020	0,010	0,030	0,015	0,050	0,025
Максимальный объёмный расход, Q _{max} , м ³ /ч	0,6	0,6	1	1	1,5	1,5	2,5	2,5
Предельный объёмный расход*, Q _s , м³/ч	1,2	1,2	2	2	3	3	5	5
Диапазон измерений температуры теплоносителя, °С	от 1 до 105 (от 1 до 130)							
Диапазон измерений разности температур теплоносителя, °C	от 3 до 95 (от 3 до 129)							
Пределы допускаемой относительной погрешности измерений объёмного расхода (объёма) теплоносителя, %	\pm (2+0,02·Q $_{ ext{max}}$ /Q), но не более ± 5							

Продолжение таблицы 1

Наименование характеристики	Значение
Пределы допускаемой относительной погрешности измерени разности температур теплоносителя, %	± (0,5+3·Δt _{min} /Δt)
Пределы допускаемой абсолютной погрешности измерений температуры теплоносителя, °С	±(0,6+0,004·t)
Пределы допускаемой относительной погрешности измерени количества тепловой энергии, %	± (3+4·Δtmin/Δt+0,02·Qmax /Q)
Пределы допускаемой относительно погрешности измерений текущего времени, %	±0,05
Максимальное рабочее избыточное давления теплоносителя, МПа	1,6
Максимальная потеря давления при Qmax, МПа	0,025

^{*} Значение объёмного расхода, при котором теплосчетчик функционирует в течение коротких промежу времени (не более 1 ч в день и не более 200 ч в год).

Примечание — Обозначения в таблице: Q — измеренное значение объёмного расхода теплоносителя, м³/ч; измеренное значение разности температур прямого и обратного потоков теплоносителя, ºC;

t – измеренное значение температуры прямого или обратного потоков теплоносителя, ^оС.

Таблица 2 – Основные технические характеристики теплосчетчика SANEXT Mono CU

Наименование характеристики Значение		начение	
Диаметр условного прохода (Ду), мм		20	
Рабочие условия эксплуатации:			
- диапазон температуры окружающего воздуха, °С, при:	от +5 до +50		
а) эксплуатации	от -40 до +55		
б) хранении	от 20 до 95		
- диапазон относительной влажности воздуха, %	от 61 до 106,7		
- диапазон атмосферного давление, кПа			
Напряжение элемента питания постоянного тока, В	3,6 ± 0,1		
Срок службы элемента питания, лет, не менее	6		

Продолжение таблицы 2

Наименование характеристики	Значение		
Степень защиты по ГОСТ 14254-2015	IP54		
Габаритные размеры (длина × ширина × высота), мм, не более	110 x 85 x 100	130 x 85 x 105	
Масса, г, не более	885	965	
Средний срок службы, лет, не менее	12		
Средняя наработка на отказ, ч, не менее	104000		

5. ОПИСАНИЕ ИНТЕРФЕЙСА ПОЛЬЗОВАТЕЛЯ

Для того, чтобы прочитать информацию на дисплее теплосчетчика, необходимо нажать на кнопку на лицевой панели. Для сохранения энергии аккумуляторной батареи, дисплей переходит в спящий режим после 3-х минут бездействия.

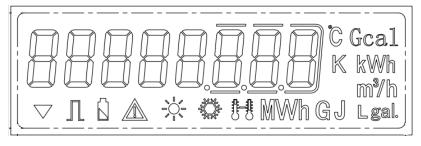


Рисунок 1 – Внешний вид дисплея теплосчетчика Sanext Mono CU

5. 1. Схема меню теплосчетчика

Рисунок 2- Схема меню верхнего уровня

Таблица 3 – Подробная схема меню теплосчетчика

Меню А1	Меню А2	Меню А3
1.1 Количество потреблённой	2.1 Текущее время	3.1 Дата архива ГГ.ММ.ДД.
тепловой энергии, Гкал	2.2 Текущая дата	3.1.1 Общий объём
1.2 Количество потреблённой	2.3 Адрес теплосчетчика	носителя, м3 за месяц
энергии охлаждения, Гкал	2.4 ID теплосчетчика	3.1.2 Количество
1.3 Текущая температура в	2.5 Модель теплосчетчика	потреблённой тепловой
подающем трубопроводе	2.6 Монтаж (IN – подающий	энергии, Гкал за месяц
1.4 Текущая температура в	трубопровод, OUT – обратный	3.1.3 Количество
обратном трубопроводе	трубопровод)	потреблённой энергии
1.5 Разность температур	2.7 Размер ДУ	охлаждения, Гкал за месяц
1.6 Мгновенный расход, м3/ч	2.8 Версия ПО (U00) и код	
1.7 Общий объём носителя, м3	ошибки (Е00)	
1.8 Мгновенный расход, кВт/ч	2.9 Время работы с	
1.9 Версия ПО (U00) и код ошибки	функционирования	
(E00)	теплосчетчика, ч.	

5. 2. Архивные значения (Меню АЗ)

Для просмотра архивных значений показаний теплосчетчика перейдите в меню АЗ. С помощью короткого нажатия выберите нужный архивный период и используйте длинное нажатия для просмотра показаний выбранного периода:

- Общий объём носителя, м3 за месяц;
- Количество потреблённой тепловой энергии, Гкал за месяц;
- Количество потреблённой энергии охлаждения, Гкал за месяц.

5. 3. Ошибки и предупреждения

Теплосчетчик постоянно выполняет самодиагностику и в случае неисправности может отображать различные неисправности (Меню A1.9 или A2.8).

Таблица 4 – Коды ошибок теплосчетчика

Ко	ЭД	Значение	Как исправить ошибку
E0)1	Низкий заряд батареи	Обратитесь в сервисный центр

Продолжение таблицы 4

Код	Значение	Как исправить ошибку
E08	Нет воды в трубопроводе	Проверьте температурный датчик на наличие обрыва цепи или короткого замыкания
E09	Низкий заряд батареи + Нет воды в трубопроводе	Обратитесь в сервисный центр
E40	Температура ниже 3°C	Проверьте температуру теплоносителя
E41	Низкий заряд батареи + Температура ниже 3°C	Обратитесь в сервисный центр
E48	Нет воды в трубопроводе + Температура ниже 3°C	Проверьте температуру теплоносителя
E49	Низкий заряд батареи + Нет воды в трубопроводе + Температура ниже 3°C	Обратитесь в сервисный центр

Визуальная индикация на ЖК-дисплее в случае ошибки:

Таблица 5 – Визуальная индикация ошибок

Неисправность	Индикатор	Причина неисправности
Низкий заряд батареи	Ī	Появляется на ЖК-экране, если Напряжение аккумулятора падает до 2,7 в. Если напряжение батареи увеличивается до 2,7 V, значок исчезает. Аккумуляторная батарея проверяет свою работоспособность каждые 30 секунд.
Знак неисправности	Δ	Появляется на ЖК-экране в следующих случаях: 1: Температура ниже 3°C 2: Температура выше 95°C 3: Короткое замыкание температурного датчика 4: Обрыв цепи температурного датчика 5: Ошибки памяти 6: Пустой трубопровод

6. ТАБЛИЦА ЭЛЕКТРИЧЕСКИХ ПОДКЛЮЧЕНИЙ

1) Исполнение с интерфейсом RS-485:

Таблица 6 – Подключение с интерфейсом RS-485

Цвет	RS-485
Красный	VCC
Черный	GND
Желтый	А
Зеленый	В

2) Исполнение с интерфейсом M-Bus:

Таблица 7 – Подключение с интерфейсом M-Bus

Цвет	Pulse (импульс)	M-Bus (2-wire)
Красный	Pulse	M-Bus
Черный	GND	M-Bus

3) Исполнение с импульсным выходом:

Красный – плюс Черный – минус

4) Исполнение с импульсным входом:

Таблица 8 – Подключение двухжильным кабелем

Цвет	Импульс
Красный	Pulse +
Черный	GND

Таблица 9 – 2 импульса: подключение четырехжильным кабелем

Цвет	Импульс
Зеленый	Pulse 1 +
Красный	Pulse 2 +
Черный	GND
Желтый	GND

Таблица 10 – 4 импульса: подключение шестижильным кабелем

Цвет	Импульс
Зеленый	Pulse 1 +
Красный	Pulse 2 +
Белый	Pulse 3 +
Коричневый	Pulse 4 +
Черный	GND
Желтый	GND

7. ЗНАК УТВЕРЖДЕНИЯ ТИПА

Наносится на теплосчетчик любым технологическим способом, обеспечивающим чёткое изображение этого знака, его стойкость к внешним воздействующим факторам, а также сохраняемость, и на титульном листе паспорта и руководства по эксплуатации типографским способом.

КОМПЛЕКТНОСТЬ СРЕДСТВА ИЗМЕРЕНИЙ 8.

Таблица 11 – Комплектность теплосчетчиков

Наименование	Обозначение	Количество		
Теплосчетчик компактный	«SANEXT Mono CU»*	1 шт.		
Паспорт (руководство по эксплуатации)	-	1 экз.		
Комплект монтажных частей и принадлежностей*	-	1 комплект		
* Модификация теплосчетчика и наличие комплекта монтажных частей и принадлежностей определяется договором на поставку.				

9. НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ, УСТАНАВЛИВАЮЩИЕ ТРЕБОВАНИЯ К ТЕПЛОСЧЕТЧИКАМ КОМПАКТНЫМ «SANEXT»

- Приказ Росстандарта от 07.02.2018 г. № 256 Об утверждении Государственной поверочной схемы для средств измерений массы и объема жидкости в потоке, объема жидкости и вместимости при статических измерениях, массового и объемного расходом жидкости.
- ГОСТ 8.558-2009 ГСИ. Государственная поверочная схема для средств измерений температуры.
- ГОСТ Р ЕН 1434-1-2011 Теплосчетчики. Часть 1. Общие требования.
- ГОСТ Р 51649- М Т2014 Теплосчетчики для водяных систем теплоснабжения. Общие технические условия.
- ТУ 4218-001-13174411-2016 Теплосчетчики компактные «SANEXT». Технические условия с изменением Nº 1.

10. УКАЗАНИЯ МЕР БЕЗОПАСНОСТИ

По степени защиты от поражения электрическим током теплосчетчик относится к классу III по ГОСТ 12.1.019.

ПРЕДУПРЕЖДЕНИЕ

При ненадлежащем обращении с литиевой батареей возникает опасность взрыва.

Батареи запрещается: заряжать; вскрывать; замыкать накоротко на время более 1 сек.; перепутывать полюса; нагревать свыше 100 °C; подвергать воздействию прямых солнечных лучей.

На батареях не должна конденсироваться влага.

При необходимости транспортировки следует соблюдать предписания по обращению с опасными грузами для соответствующего вида транспорта (обязательная маркировка).

Использованные литиевые батареи относятся к специальному виду отходов.

11. ПОДГОТОВКА К ИСПОЛЬЗОВАНИЮ. РАЗМЕЩЕНИЕ. МОНТАЖ

11. 1. Подготовка изделия к установке на месте эксплуатации

Перед установкой теплосчётчика проверьте его комплектность в соответствии с паспортом. Выполните внешний осмотр с целью выявления механических повреждений корпуса прибора. Если прибор находился в условиях, отличных от условий эксплуатации, то перед вводом в эксплуатацию необходимо выдержать его в указанных условиях не менее 2 ч.

11. 2. Размещение

При выборе места для установки следует руководствоваться следующими критериями: не следует устанавливать теплосчетчик в местах, где возможно присутствие пыли или агрессивных газов, располагать вблизи мощных источников электромагнитных и тепловых излучений или в местах, подверженных тряске, вибрации или воздействию воды.

При монтаже необходимо учитывать, что теплосчетчик может быть сконфигурирован для работы в прямом или обратном трубопроводе (тип счетчика отображается в меню A2, см. Таблицу 3). Возможно переконфигурирование прибора (IN/OUT) до начала эксплуатации с подающего на обратный или наоборот. При этом необходима переустановка датчиков температуры.

Перед установкой расходомера трубопровод необходимо промыть, чтобы удалить из него окалину, песок и другие твердые частицы.

Монтаж теплосчетчика в трубопровод осуществляется с помощью оригинального комплекта присоединительных штуцеров. В других случаях должны быть предусмотрены прямые участки не менее 3 Ду до и 1 Ду после счетчика.

11. 3. Монтаж

Монтаж и демонтаж счётчика, как и устранение неисправностей следует доверять только квалифицированному персоналу, внимательно изучившему настоящий паспорт. При несоблюдении указанных здесь рекомендаций не гарантируется заявленная точность измерений.

Счётчик можно монтировать как на вертикальных, так и на горизонтальных участках трубопровода, ЖК-дисплеем вверх.

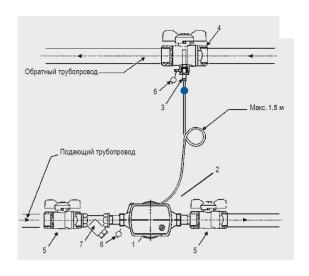
При монтаже расходомеров необходимо соблюдать следующие условия:

– направление стрелки на корпусе счетчика должно совпадать с направлением потока воды в

трубопроводе;

- перед теплосчетчиком обязательно должен быть установлен фильтр;
- присоединительные штуцеры соединить с трубопроводом, установить прокладки между штуцером и расходомером, затянуть накидные гайки;
- установить расходомер в трубопроводе без натягов, сжатий и перекосов;
- установить расходомер так, чтобы он был всегда заполнен водой;
- расходомер может устанавливаться на горизонтальном, наклонном и вертикальном трубопроводе.

При монтаже универсального теплосчетчика в прямой (подающий) трубопровод, вкрутить в корпус теплосчетчика термометр с красной наклейкой.


При монтаже универсального теплосчетчика в обратный трубопровод, вкрутить в корпус теплосчетчика термометр с синей наклейкой

! После установки расходомера проведение сварочных работ на трубопроводе не допускается.

Перед вводом расходомера в эксплуатацию проводят следующие операции:

- после монтажа расходомера воду подавать в магистраль медленно при открытых в ней воздушных клапанах для предотвращения разрушения расходомера под действием захваченного водой воздуха;
- проверить герметичность выполненных соединений;
- соединения должны выдерживать давление 1,6 МПа.

! Во вновь вводимую отопительную систему (дом-новостройка), после капитального ремонта или замены некоторой части труб расходомер можно устанавливать только после пуска системы в эксплуатацию и тщательной ее промывки (2-3 недели). На период ремонта отопительной сети расходомеры рекомендуется демонтировать и временно заменить соответствующей проставкой.

1. Счетчик тепла

- 2. Термодатчик сопротивления на подающем трубопроводе (красная шильда)
- 3. Термодатчик сопротивления на трубопроводе (синяя шильда)
- 4. Кран шаровый для подключения термодатчика
- 5. Запорный шаровый кран
- 6. Пломба
- 7. Фильтр

Рисунок 3 - Принципиальная схема общая подающий трубопровод

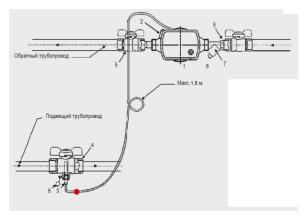


Рисунок 4 - Принципиальная схема общая обратный трубопровод

- 1. Счетчик тепла
- 2. Термодатчик сопротивления на подающем трубопроводе (красная шильда)
- 3. Термодатчик сопротивления на трубопроводе (синяя шильда)
- 4. Кран шаровый для подключения термодатчика
- 5. Запорный шаровый кран
- 6. Пломба
- 7. Фильтр

12. ПОВЕРКА

Теплосчетчик подлежит поверке, согласно документу МЦКЛ.0227.МП «Теплосчетчики компактные «SANEXT». Методика поверки». Периодическая поверка проводится один раз в шесть лет.

13. ПРАВИЛА ХРАНЕНИЯ И ТРАНСПОРТИРОВКА

Теплосчетчик в упаковке предприятия-изготовителя можно транспортировать любым видом транспорта в крытых транспортных средствах на любые расстояния. Во время транспортирования и погрузочно-разгрузочных работ транспортная тара не должна подвергаться резким ударам и прямому воздействию атмосферных осадков и пыли.

Предельные условия хранения и транспортирования:

- 1) Температура окружающего воздуха от минус 25 до плюс 55 °C;
- 2) Относительная влажность воздуха не более 95%;
- 3) Атмосферное давление не менее 61,33 кПа (460 мм рт. ст.).

Хранение приборов в упаковке на складах изготовителя и потребителя должно соответствовать условиям хранения п. 5 по ГОСТ 15150.

14. ГАРАНТИЙНЫЕ ОБЯЗАТЕЛЬСТВА

- 1.1. Изготовитель гарантирует соответствие изделия требованиям ТУ 4218-001-13174411-2016 при соблюдении потребителем условий эксплуатации, хранения, транспортирования и монтажа.
- 1.2. Гарантийный срок эксплуатации и хранения изделия составляет 3 года с даты продажи, указанной в передаточных документах.
- 1.3. Изготовитель не принимает рекламации, если теплосчетчики вышли из строя по вине потребителя из-за неправильной эксплуатации или при несоблюдении указаний, приведенных в настоящем «Руководстве».
- 1.4. В гарантийный ремонт принимаются теплосчетчики полностью укомплектованные и с настоящим руководством.

15. ДАННЫЕ О ПЕРИОДИЧЕСКОЙ ПОВЕРКЕ

Вычислитель подвергается вторичной поверке перед истечением межповерочного интервала или после проведения ремонта. Поверка производится согласно методике поверки теплосчетчика. Результаты поверки должны быть зафиксированы в таблице 12, приведённой ниже.

Таблица 12 – Данные о периодической поверке

Дата и вид поверки	Организация - поверитель	Результаты поверки	Подпись поверителя и оттиск клейма

16. СВИДЕТЕЛЬСТВО О ПЕРВИЧНОЙ ПОВЕРКЕ

Теплосчетчик Sanext Mono CU прошел поверку в соответствии с таблицей. Межповерочный интервал составляет 6 лет с момента первичной поверки.

Номер теплосчетчика:	
Тип счетчика	Ультразвуковой
Наименование счетчика	Sanext Mono CU
Подающий/обратный трубопровод	
Дата поверки:	
Наименование поверочной	
лаборатории:	
Поверитель:	
Место печати	

Паспорт необходимо сохранять в течение всего срока эксплуатации теплосчетчика. Для проведения периодической поверки необходимо наличие данного паспорта.